
Ergodic Theory and Measured Group Theory
Lecture 17

Proof of Furstenberg Correspondence ( cochineal) . Mn := ¥, ftp.adf.IA .

Z
diff) := ¥, / lire Fu : 8- In. C- B) |

,
so •

• • • • or

Fa
° I 2 3 a

EX

Mulk) - ¥, 118th
: 8. Iatñ} / = ¥, 118th :O c- AH

=
.

By the Banach - Alaogln theorem
,
the span

of prob . areas.
on ✗ in weukt-unpc.it . Thus , after passing he a subsequence
(which we assure WLOHI

,
7 weak& limit link - M

.

h →

M is invariant here inch M is almost invariant

kith some In error) al En→ 0 due to the Folker
condition

.
Thus Pm 12 "

,
9) is a pnp

action
.

Moreover
,

d- (A) = him
↳• lA% - E. MIA ) -- MAJ .



d- IAngiAA.ingiin-ztimiufln-ngiAA.mg.
" A AK /

=

a-•

Yul

Ang! An . . . Agi' Afi { rEFu : V-ii-krc-gi.tt }
= { JE Fu : kiosk 8. Ia Eg"Ñ]

go :=1i
= ✗ c- Fu : t.IAC-A~ngiAA.in guilt}
= Itil . tilting",Ñn . . -Agi'Ñ)

,

so ☒ = limit hlÑngiÑn
. . .ngiÑ)

nose

= tin ruining
.

" Ah
. .

.si#--P ?
how

This shows tht Multiple Recurrence ⇒ Szeneredi 's theorem
.

Furseuberg Multiple Recurrence Theon / 19771. For
any pup 2^144,

any A- EX of positive censure
,
Kk 7-ns.t

.

MAAT"Ah . . - AT
"") > 0.

In fact
, V-fc-LTX.tl the , fzo , ffdot > 0,

limit 1- É If -11-4-1 . 4-"'f) old > 0
, (MR)

Nsa Ntl n=0



We call a pupation 2714,9) Multiple Recurrence action

( MRI if the LMR) property above holds to it .
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It's harder to define wpact extensions at we'll skip it.
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