Ergodic Theory and Measured Group Theory
Lecture 17

Proof ot Fustenbery Correspondence (continued). $\mu_{n}:=\frac{1}{\left|F_{n}\right|} \sum_{\gamma \in F_{n}} \delta_{1 \cdot \mathbb{1}_{A}}$.

$$
\begin{aligned}
& f_{n}(\tilde{B}):=\frac{1}{\left|F_{n}\right|}\left|\left\{\gamma \in F_{n}: \gamma \cdot \mathbb{1}_{A} \in \tilde{B}\right\}\right|, s 0 \\
& \tilde{B} \subseteq X
\end{aligned}
$$

D) the Basch-Alaogla theorem, the space it prob. weds. on X is weckes-oupent, Thesis, after passicy to a sebsegnene (which wi nssuel W(OG), \exists weak - $\operatorname{liminit}_{t \rightarrow \infty} \lim _{n \rightarrow \infty} \mu_{n}=\mu$.
${ }^{n}$ is invariant before inch μ_{4} is almost invaricut (with some En eccor) al $\varepsilon_{n} \rightarrow 0$ due do the Folver condition. Tuns $\Gamma \cap\left(2^{\mu}, \mu\right)$ is a pap action.
Moreover, $\bar{d}(A)=\lim _{n \rightarrow \infty} \frac{\left|A \cap F_{n}\right|}{\left|F_{n}\right|}=\lim _{n \rightarrow \infty} \mu_{n}(\tilde{A})=\mu(\hat{A})$.

$$
\begin{align*}
& \bar{d}\left(A \cap g_{1}^{-1} A \cap \ldots \cap g_{k}^{-1} A\right) \geqslant \liminf _{n \rightarrow \infty} \frac{\left|A \cap g_{1}^{-1} A \cap \ldots \cap g_{k}^{-1} A \cap F_{n}\right|}{\left|F_{n}\right|} \\
& A \cap g_{1}^{-1} A \cap \ldots \cap g_{k}^{-1} \cap F_{n}=\left\{\gamma \in F_{u}: \forall i \leq k \quad \gamma \in g_{i}^{-1} A\right\} \\
& =\left\{\gamma \in F_{n}: \forall i \leq k \quad \gamma \cdot \mathbb{1}_{A} \in g^{-1} \tilde{A}\right\} \\
& g_{0}:=1_{\Gamma}=\left\{\gamma \in F_{n}: \gamma \cdot \mathbb{I}_{A} \in \tilde{A} \cap g_{1}^{-1} \tilde{A} \cap \ldots \cap g_{k}^{-1} \tilde{A}\right\} \\
& \left.=\left|F_{u}\right| \cdot \mu_{n} \mid \tilde{A} \cap g_{1}^{-1} \tilde{A} \cap \ldots \cap g_{k}^{-1} \hat{A}\right) \text {, } \\
& \text { so } \#=\operatorname{limisf}_{n \rightarrow \alpha} \mu_{n}\left(\tilde{A} \cap g_{1}^{-1} \tilde{A} \cap \ldots \cap g_{k}^{-1} \tilde{A}\right) \\
& =\lim _{n \rightarrow \infty} \mu_{n}\left(\tilde{A} \cap g_{1}^{-1} \tilde{A} \cap \ldots \cap g_{k}^{-1} \tilde{A}\right)=\mu(\square) .
\end{align*}
$$

This shaws Wht Maltiple Recurceace \Rightarrow Szeveredi's theoren.
Fursenbery Multiple Recurcence Thuen (1977), For any pap $\mathbb{Z}^{\Upsilon}(x, \mu)$, an $A \leq X$ of positive ceasure, $\forall k \quad \exists n$ s.t.

$$
\mu\left(A \cap T^{-u} A \cap \ldots n \cap T^{-k n}\right)>0 .
$$

In tad, $\left.\forall f \in L^{\infty}(x, r)\right)_{N} \forall k, F \geqslant 0, \int f d r>0$,

$$
\operatorname{limint}_{N \rightarrow \infty} \frac{1}{N+1} \sum_{n=0}^{N} \int f \cdot\left(T^{n} f\right) \ldots \cdot\left(T^{k n} f\right) d^{\mu}>0_{r} \quad(M R)
$$

We call a impaction $\mathbb{Z}^{\geqslant}(X, y)$ Multiple Recurrence action (MR) it the (MR) property above wolds \in it. We already "saw" the weakly mixing and compact actions ace (MR). The ray Furstenbery proves (MR) for all actress is by showing that every action is "built" out of weakly mixing al compact action. This "built" is by extensions.

Def. For ${ }_{\beta}$ ny semigroup action $\Gamma^{N^{\alpha}}(x, \mu)$, another citron $\Gamma \gamma^{\beta}(Y, 0)$ is called a factor of α for α is called the extension of β) if there is a μ-homomorphism/ factor map $\pi: X \rightarrow Y$, ie. I measurable $\pi: X \rightarrow Y$ that preserve the neworune, i.e. $\pi^{*} \mu \mu=v$ (hence onto ane.), d $\bar{\pi}$ is equivariart, ie. $\forall \gamma \in \Gamma, \pi_{\circ} \gamma_{\alpha}=\gamma_{\beta} \cdot \pi$ ace.

Example. Products: Let $\Gamma \Gamma^{\alpha}(x, r) \& \Gamma^{\beta}(Y, \nu)$, hen tale the product action $\Gamma \nu^{\alpha \times \beta}(X \times Y, \mu \times \nu)$ by $\gamma \cdot(x, y):=\left(\gamma_{i x}, \gamma_{\dot{B}} y\right)$ - let $\pi: X \times Y \rightarrow X$
 be the X-projective. Then π is a factor map.

A tantore $\Gamma^{\sim}(Y, v)$ of $\Gamma^{\leadsto s}(x, r)$ can be idutified with a Γ-iwariant sab-r-algebra of $B(X)$, navely: $B_{y}:=\pi^{-1} B(Y)$, This B_{y} is the σ-algebere of Borel π-invariant sets (for products, it's Boel sets tet are anious of "columns"). Coaversely, it $e s B(x)$ is a Γ-invarisis sub-o-alyetion, then $子$ fatoc wap $\pi: X \rightarrow\left(2^{N}\right)^{\Gamma}$ with some mengre v on $\left(2^{N}\right)^{r}$ s.t. $e=\pi^{-1} B\left(\left(2^{N}\right)^{N}\right)$, Tuy invoriact sub- σ-algepras are called tactor sub-ralgebras or just tantors.

Let $\mathbb{R} \xrightarrow{\top}_{9}(x, \mu)$ a lut $\mathbb{Z} \sim^{s}(Y, 0)$ be a factor, cocrespording to sub-r-alyebra B_{y}. To dofice what it means for this extension to be neakly wixing or compact, we look at ench preimacye ${ }^{x_{j}}$ of an S-ocbit $(y)_{s}$ al suy that the restriction of T on x_{y} is makely mixing or ugact, luat re wact to do so ausiforenly. Since both wotions are elfived using inuer proluct, we relativise be notion of inner prochut to By as follows: $\forall f, y \in L^{2}(x, \mu)$
$\langle f, y\rangle_{Y}:=\mathbb{E}_{r}\left(f g \mid B_{Y}\right)$ it's afurction. is conditional expectation

Define $L^{2}(X \mid Y):=\left\{f \in L^{2}(x, y):\|f\|_{2}^{y} \in \mathcal{L}^{\infty}(x, y)\right\}$. N.. we can define weak nixing l ouproct for this new Hilbert module over $L^{\alpha}(x, \mu)$.

Def. The extension $X \rightarrow Y$ in weakly mixing if $\forall f_{, g} \in L^{2}(X \mid Y)$ with $\mathbb{E}\left(f \mid B_{B_{y}}\right) \equiv 0 \equiv \mathbb{E}\left(g \mid B_{y}\right)$, $\lim _{N \rightarrow a} \frac{1}{N_{+1}} \sum_{n=0}^{n}\left\langle T^{-l} f, y\right\rangle_{Y}=0$ in L^{0}-morn.

It's harder to define wopact ecotensious al weill skip it. What Furstenberg calls proved is the following:

Reopen. let $X \rightarrow Y$ be an extension of pard \mathbb{T}-actions. (a) If Y is $(M R) d$ this cotension is either weakly mixing os compact, then X too is (MR).
(b) Dichotomy: If his extension is not weakly mixing, then \exists nontrivial $X \rightarrow Y^{+} \rightarrow Y$ st. $Y^{+} \rightarrow Y^{+}$is compact.

Thus, if by Zorn's lemur, we tulle a maximal (MR)
factor Y if X then Y would have to be eq ad to X hearse otherwise, either $X \rightarrow Y$ necked mixing
or $\quad \exists X \rightarrow Y^{+} \rightarrow Y^{\prime}$ wit $Y^{\dagger} \rightarrow Y$ coact at cither case contraclicts the maxinalib of Y by (a). This "proves" Farstembery MR Redrew.
And the sequence (ordinal-length) one gets instead of Zoan:

$$
x_{0}:=\{.\} \leftarrow x_{1} \leftarrow x_{2} \leftarrow \ldots \leftarrow x_{\omega} \leftarrow x_{\omega+1} \leftarrow x_{0+2} \leftarrow จ 90
$$

an $\leftarrow X_{\lambda}=X$. This i i calleal a Fursta-bery tower.

